logo

KOALA SCIENCE COMMUNITY
     Research, Connect, Protect

 

Search

Literature

Experimental Evaluation of Koala Scat Persistence and Detectability with Implications for Pellet-Based Fauna Census

Romane H. Cristescu,1,2 Klara Goethals,3 Peter B. Banks,1, 4
Frank N. Carrick,2 and C
èline Frére5

1School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW 2052, Australia
2Centre for Mined Land Rehabilitation, Sustainable Minerals Institute, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
3Department of Comparative Physiology and Biometrics, Faculty of Veterinary Medicine, Ghent University, 9820 Merelbeke, Belgium
4School of Biological Sciences, The University of Sydney, Camperdown, NSW 2006, Australia
5
School of Land, Crop and Food Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia

ABSTRACT
Establishing species distribution and population trends are basic requirements in conservation biology, yet acquiring this fundamental information is often di
fficult. Indirect survey methods that rely on fecal pellets (scats) can overcome some difficulties but present their own challenges. In particular, variation in scat detectability and decay rate can introduce biases. We studied how vegetation communities affect the detectability and decay rate of scats as exemplified by koalas Phascolarctos cinereus: scat detectability was highly and consistently dependent on ground layer complexity (introducing up to 16% non-detection bias); scat decay rates were highly heterogeneous within vegetation communities; exposure of scats to surface water and rain strongly accelerated scat decay rate and finally, invertebrates were found to accelerate scat decay rate markedly, but unpredictably. This last phenomenon may explain the high variability of scat decay rate within a single vegetation community. Methods to decrease biases should be evaluated when planning scat surveys, as the most appropriate method(s) will vary depending on species, scale of survey and landscape characteristics. Detectability and decay biases are both stronger in certain vegetation communities, thus their combined effect is likely to introduce substantial errors in scat surveys and this could result in inappropriate and counterproductive management decisions.

  • All
  • 2013
  • Biogeography
  • Biology
  • Chlamydia
  • Diet
  • Disease
  • Ecology
  • Ellis
  • Eucalyptus
  • Genetics
  • Habitat
  • Infection
  • Interventions
  • Koala
  • Lunney
  • Threats
  • Timms
load more hold SHIFT key to load all load all